How many delta-matroids are there?

نویسندگان

  • Daryl Funk
  • Dillon Mayhew
  • Steven D. Noble
چکیده

J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcct-colorings, and rainbow colorings, and many more. N. Linial (1986) showed that the chromatic polynomial χ(G;X) is #P-hard to evaluate for all but three values X = 0, 1, 2, where evaluation is in P. This dichotomy includes evaluation at real or complex values, and has the further property that the set of points for which evaluation is in P is finite. We investigate how the complexity of evaluating univariate graph polynomials that arise from CPcolorings varies for different evaluation points. We show that for some CP-colorings (harmonious, convex) the complexity of evaluation follows a similar pattern to the chromatic polynomial. However, in other cases (proper edge colorings, mcct-colorings, H-free colorings) we could only obtain a dichotomy for evaluations at non-negative integer points. We also discuss some CP-colorings where we only have very partial results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excluding a bipartite circle graph from line graphs

We prove that for fixed bipartite circle graph H, all line graphs with sufficiently large rank-width (or clique-width) must contain an isomorphic copy of H as a pivotminor. To prove this, we introduce graphic delta-matroids. Graphic delta-matroids are minors of delta-matroids of line graphs and they generalize graphic or cographic matroids.

متن کامل

The Structure of Delta-Matroids with Width One Twists

The width of a delta-matroid is the difference in size between a maximal and minimal feasible set. We give a Rough Structure Theorem for delta-matroids that admit a twist of width one. We apply this theorem to give an excluded-minor characterisation of delta-matroids that admit a twist of width at most one.

متن کامل

Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra

We relate an axiomatic generalization of matroids, called a jump system, to poly-hedra arising from bisubmodular functions. Unlike the case for usual submodularity, the points of interest are not all the integral points in the relevant polyhedron, but form a subset of them. However, we do show that the convex hull of the set of points of a jump system is a bisubmodular polyhedron, and that the ...

متن کامل

Operations on M-Convex Functions on Jump Systems

A jump system is a set of integer points with an exchange property, which is a generalization of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid (or a submodular system). Recently, the concept of M-convex functions on constant-parity jump systems is introduced by Murota as a class of discrete convex functions that admit a local criterion for global minimality. M-con...

متن کامل

A constrained independent set problem for matroids

In this note, we study a constrained independent set problem for matroids and certain generalizations. The basic problem can be regarded as an ordered version of the matroid parity problem. By a reduction of this problem to matroid intersection, we prove a min-max formula. Studying the weighted case and a delta-matroid generalization, we prove that some of them are not more complex than matroid...

متن کامل

Inductive tools for connected delta-matroids and multimatroids

We prove a splitter theorem for tight multimatroids, generalizing the corresponding result for matroids, obtained independently by Brylawski and Seymour. Further corollaries give splitter theorems for delta-matroids and ribbon graphs. © 2017 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2018